Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.781
Filtrar
1.
Immunol Lett ; 266: 106838, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278305

RESUMO

OBJECTIVES: Idiopathic membranous nephropathy (MN) is an autoimmune disease characterized by specific antibodies. However, the underlying mechanisms by which lymphocytes promote the development of MN remain poorly understood. This study aims to determine the changes of B-cell subsets and their clinical significance in MN patients. METHODS: We included a cohort of 21 idiopathic MN patients with new onset or a relapse, 19 healthy controls (HCs) and 10 patients with minimal change disease (MCD). Immunohistochemistry and flow cytometry were performed to assess the B-cell infiltration in renal biopsy tissues and peripheral blood, respectively. RESULTS: Idiopathic MN patients (including new-onset and relapse groups) had lower percentages of marginal-zone B (MZB) and non-switched memory B cells, and higher percentages of plasmablasts than HCs (P < 0.01). Particularly, the new-onset group had lower percentages of switched memory B cells and MZB cells, and higher percentages of Naïve B cells than HCs (P<0.05). Interestingly, the percentage of plasmablasts was significantly correlated with urine protein to creatinine ratio, serum albumin, IgG, anti-M-type phospholipase A2 receptor antibody level and age in MN patients (P < 0.05). MN with Ehrenreich-Churg stage Ⅱ-Ⅳ had a lower median percentage of MZB and non-switched memory B cells, while a higher median percentage of plasmablasts than those in MN patients with stage Ehrenreich-Churg I (P < 0.05). CONCLUSION: Idiopathic MN patients had specific changes in B-cell subsets proportions in peripheral blood. Further studies are needed to precisely determine the roles of B-cell subsets in MN.


Assuntos
Subpopulações de Linfócitos B , Glomerulonefrite Membranosa , Adulto , Humanos , Glomerulonefrite Membranosa/diagnóstico , Plasmócitos , Tecido Linfoide/metabolismo , Anticorpos , Recidiva
2.
PLoS Biol ; 21(11): e3002389, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983289

RESUMO

The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTß signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Infecção Persistente , Meninges/metabolismo , Tecido Linfoide/metabolismo , Autoanticorpos
3.
Cell Rep ; 42(11): 113425, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37950867

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident effector cells with roles in tissue homeostasis, protective immunity, and inflammatory disease. Group 3 ILCs (ILC3s) are classically defined by the master transcription factor RORγt. However, ILC3 can be further subdivided into subsets that share type 3 effector modules that exhibit significant ontological, transcriptional, phenotypic, and functional heterogeneity. Notably lymphoid tissue inducer (LTi)-like ILC3s mediate effector functions not typically associated with other RORγt-expressing lymphocytes, suggesting that additional transcription factors contribute to dictate ILC3 subset phenotypes. Here, we identify Bcl6 as a subset-defining transcription factor of LTi-like ILC3s in mice and humans. Deletion of Bcl6 results in dysregulation of the LTi-like ILC3 transcriptional program and markedly enhances expression of interleukin-17A (IL-17A) and IL-17F in LTi-like ILC3s in a manner in part dependent upon the commensal microbiota-and associated with worsened inflammation in a model of colitis. Together, these findings redefine our understanding of ILC3 subset biology.


Assuntos
Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Humanos , Camundongos , Imunidade Inata , Linfócitos/metabolismo , Tecido Linfoide/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(10): 1867-1886, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589134

RESUMO

BACKGROUND: Tertiary lymphoid organs (TLOs) are ectopic lymphoid organs developed in nonlymphoid tissues with chronic inflammation, but little is known about their existence in different types of vascular diseases and the mechanism that mediated their development. METHODS: To take advantage of single-cell RNA sequencing techniques, we integrated 28 single-cell RNA sequencing data sets containing 5 vascular disease models (atherosclerosis, abdominal aortic aneurysm, intimal hyperplasia, isograft, and allograft) to explore TLOs existence and environment supporting its growth systematically. We also searched Medline, Embase, PubMed, and Web of Science from inception to January 2022 for published histological images of vascular remodeling for histological evidence to support TLO genesis. RESULTS: Accumulation and infiltration of innate and adaptive immune cells have been observed in various remodeling vessels. Interestingly, the proportion of such immune cells incrementally increases from atherosclerosis to intimal hyperplasia, abdominal aortic aneurysm, isograft, and allograft. Importantly, we uncovered that TLO structure cells, such as follicular helper T cells and germinal center B cells, present in all remodeled vessels. Among myeloid cells and lymphocytes, inflammatory macrophages, and T helper 17 cells are the major lymphoid tissue inducer cells which were found to be positively associated with the numbers of TLO structural cells in remodeled vessels. Vascular stromal cells also actively participate in vascular TLO genesis by communicating with myeloid cells and lymphocytes via CCLs (C-C motif chemokine ligands), CXCL (C-X-C motif ligand), lymphotoxin, BMP (bone morphogenetic protein) chemotactic, FGF-2 (fibroblast growth factor-2), and IGF (insulin growth factor) proliferation mechanisms, particularly for lymphoid tissue inducer cell aggregation. Additionally, the interaction between stromal cells and immune cells modulates extracellular matrix remodeling. Among TLO structure cells, follicular helper T, and germinal center B cells have strong interactions via TCR (T-cell receptor), CD40 (cluster of differentiation 40), and CXCL signaling, to promote the development and maturation of the germinal center in TLO. Consistently, by reviewing the histological images from the literature, TLO genesis was found in those vascular remodeling models. CONCLUSIONS: Our analysis showed the existence of TLOs across 5 models of vascular diseases. The mechanisms that support TLOs formation in different models are heterogeneous. This study could be a valuable resource for understanding and discovering new therapeutic targets for various forms of vascular disease.


Assuntos
Aterosclerose , Remodelação Vascular , Humanos , Hiperplasia/patologia , Análise da Expressão Gênica de Célula Única , Tecido Linfoide/metabolismo , Aterosclerose/patologia
5.
Sci Rep ; 13(1): 12687, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542090

RESUMO

Individuals with Autism Spectrum Disorder (ASD; autism) commonly present with gastrointestinal (GI) illness in addition to core diagnostic behavioural traits. The appendix, or cecum in mice, is important for GI homeostasis via its function as a key site for fermentation and a microbial reservoir. Even so, the role of the appendix and cecum in autism-associated GI symptoms remains uninvestigated. Here, we studied mice with an autism-associated missense mutation in the post-synaptic protein neuroligin-3 (Nlgn3R451C), which impacts brain and enteric neuronal activity. We assessed for changes in cecal motility using a tri-cannulation video-imaging approach in ex vivo preparations from wild-type and Nlgn3R451C mice. We investigated cecal permeability and neurally-evoked secretion in wild-type and Nlgn3R451C tissues using an Ussing chamber set-up. The number of cecal patches in fresh tissue samples were assessed and key immune populations including gut macrophages and dendritic cells were visualised using immunofluorescence. Nlgn3R451C mice displayed accelerated cecal motor complexes and reduced cecal weight in comparison to wildtype littermates. Nlgn3R451C mice also demonstrated reduced neurally-evoked cecal secretion in response to the nicotinic acetylcholine receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP), but permeability was unchanged. We observed an increase in the number of cecal patches in Nlgn3R451C mice, however the cellular morphologies of key immune populations studied were not significantly altered. We show that the R451C nervous system mutation leads to cecal dysmotility, impaired secretion, and neuro-immune alterations. Together, these results suggest that the R451C mutation disrupts the gut-brain axis with GI dysfunction in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Camundongos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Ceco/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Tecido Linfoide/metabolismo , Neurônios/metabolismo
6.
Cell Rep ; 42(8): 112924, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540600

RESUMO

Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.


Assuntos
Imunidade Inata , Fator 1 de Transcrição de Linfócitos T , Animais , Camundongos , Linfócitos , Tecido Linfoide/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo
7.
J Am Soc Nephrol ; 34(10): 1687-1708, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548710

RESUMO

SIGNIFICANCE STATEMENT: Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms underlying TLT expansion and their effect on renal regeneration remain unclear. The authors report that single-nucleus RNA sequencing and validation experiments demonstrate that TLTs potentially amplify inflammation in aged injured kidneys. Lymphocytes within TLTs promote proinflammatory phenotypes of the surrounding proximal tubules and fibroblasts within the TLTs via proinflammatory cytokine production. These proinflammatory parenchymal cells then interact with immune cells by chemokine or cytokine production. Such cell-cell interactions potentially increase inflammation, expand TLTs, and exacerbate kidney injury. These findings help illuminate renal TLT pathology and suggest potential therapeutic targets. BACKGROUND: Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms that expand TLTs and underlie exacerbation of kidney injury remain unclear. METHODS: We performed single-nucleus RNA sequencing (snRNA-seq) on aged mouse kidneys with TLTs after ischemia-reperfusion injury. The results were validated using immunostaining, in situ hybridization of murine and human kidneys, and in vitro experiments. RESULTS: Using snRNA-seq, we identified proinflammatory and profibrotic Vcam1+ injured proximal tubules (PTs) with NF κ B and IFN-inducible transcription factor activation. VCAM1 + PTs were preferentially localized around TLTs and drove inflammation and fibrosis via the production of multiple chemokines or cytokines. Lymphocytes within TLTs expressed Tnf and Ifng at high levels, which synergistically upregulated VCAM1 and chemokine expression in cultured PT cells. In addition, snRNA-seq also identified proinflammatory and profibrotic fibroblasts, which resided within and outside TLTs, respectively. Proinflammatory fibroblasts exhibited STAT1 activation and various chemokine or cytokine production, including CXCL9/CXCL10 and B cell-activating factor, contributing to lymphocyte recruitment and survival. IFN γ upregulated the expression of these molecules in cultured fibroblasts in a STAT1-dependent manner, indicating potential bidirectional interactions between IFN γ -producing CXCR3 + T cells and proinflammatory fibroblasts within TLTs. The cellular and molecular components described in this study were confirmed in human kidneys with TLTs. CONCLUSIONS: These findings suggest that TLTs potentially amplify inflammation by providing a microenvironment that allows intense interactions between renal parenchymal and immune cells. These interactions may serve as novel therapeutic targets in kidney diseases involving TLT formation.


Assuntos
Citocinas , Tecido Linfoide , Humanos , Camundongos , Animais , Tecido Linfoide/metabolismo , Quimiocinas/metabolismo , Interferon gama , Rim/metabolismo , Quimiocina CXCL9 , Inflamação , Quimiocina CXCL10 , Receptores CXCR3
8.
Front Immunol ; 14: 1206299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398661

RESUMO

Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.


Assuntos
Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Mucosa Intestinal , Epitélio/metabolismo , Tecido Linfoide/metabolismo , Linfócitos Intraepiteliais/metabolismo , Mamíferos/metabolismo
9.
Immunity ; 56(8): 1894-1909.e5, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421943

RESUMO

Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.


Assuntos
Tecido Linfoide , Células T de Memória , Criança , Humanos , Lactente , Linfócitos T CD8-Positivos , Memória Imunológica , Tecido Linfoide/metabolismo , Mucosa , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Recém-Nascido , Pré-Escolar
10.
Mucosal Immunol ; 16(5): 658-670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453568

RESUMO

Group 3 innate lymphoid cells (ILC3) are potent effector cells with critical roles in enforcing immunity, barrier integrity and tissue homeostasis along the gastrointestinal tract. ILC3 are considered primarily tissue-resident cells, seeding the gastrointestinal tract during embryonic stages and early life. However, the mechanisms through which mature ILC3 are maintained within adult tissues are poorly understood. Here, we report that lymphoid tissue-inducer-like (LTi-like) ILC3 exhibit minimal turnover in the healthy adult intestinal tract, persist for extended periods of time, and display a quiescent phenotype. Strikingly, during enteric bacterial infection LTi-like ILC3 also exhibit negligible hematopoietic replenishment and remain non-proliferative, despite robustly producing cytokines. Survival of LTi-like ILC3 was found to be dependent upon the balance between the metabolic activity required to drive effector function and anti-apoptotic programs. Notably, the pro-survival protein B-cell lymphoma-2 (Bcl-2) was required for the survival of LTi-like ILC3 ex vivo but was rendered partially dispensable if mitochondrial respiration was inhibited. Together we demonstrate LTi-like ILC3 are a tissue-resident, quiescent population that persist independently of hematopoietic replenishment to survive within the intestinal microenvironment.


Assuntos
Imunidade Inata , Linfócitos , Tecido Linfoide/metabolismo , Citocinas/metabolismo , Fenótipo
11.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047218

RESUMO

The androgen-dependent or -independent pathways are regarded as primary therapeutic targets for the neoplasm of the prostate. Mucosa-associated lymphoid tissue 1 (MALT1) acting as a paracaspase in the regulation of nuclear factor κB (NF-κB) signal transduction plays a central role in inflammation and oncogenesis in cancers. This study confirmed the potential linkages between androgen and NF-κB activation by inducing MALT1 in the androgen receptor-full length (ARFL)-positive LNCaP and 22Rv1 prostate cancer cells. Although androgen did not stimulate MALT1 expression in AR-null or ectopic ARFL-overexpressed PC-3 cells, the ectopic overexpression of the AR splicing variant 7 (ARv7) upregulated MALT1 to activate NF-κB activities in 22Rv1 and PC-3 cells. Since the nuclear translocation of p50 and p65 was facilitated by ARv7 to motivate NF-κB activity, the expressions of MALT1, prostate-specific antigen (PSA), and N-myc downstream regulated 1 (NDRG1) were therefore induced in ectopic ARv7-overexpressed prostate cancer cells. Ectopic ARv7 overexpression not only enhanced 22Rv1 or PC-3 cell growth and invasion in vitro but also the tumor growth of PC-3 cells in vivo. These results indicate that an androgen receptor induces MALT1 expression androgen-dependently and -independently in ARFL- or ARv7-overexpressed prostate cancer cells, suggesting a novel ARv7/MALT1/NF-κB-signaling pathway may exist in the cells of prostate cancer.


Assuntos
Carcinoma , Neoplasias da Próstata , Masculino , Humanos , NF-kappa B/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Androgênios/metabolismo , Próstata/patologia , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Tecido Linfoide/metabolismo , Carcinoma/metabolismo , Mucosa/metabolismo
12.
Semin Immunol ; 66: 101709, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621291

RESUMO

Innate lymphoid cells (ILCs) are a group of innate lymphocytes that do not express RAG-dependent rearranged antigen-specific cell surface receptors. ILCs are classified into five groups according to their developmental trajectory and cytokine production profile. They encompass NK cells, which are cytotoxic, helper-like ILCs 1-3, which functionally mirror CD4+ T helper (Th) type 1, Th2 and Th17 cells respectively, and lymphoid tissue inducer (LTi) cells. NK cell development depends on Eomes (eomesodermin), whereas the ILC1 program is regulated principally by the transcription factor T-bet (T-box transcription factor Tbx21), that of ILC2 is regulated by GATA3 (GATA-binding protein 3) and that of ILC3 is regulated by RORγt (RAR-related orphan receptor γ). NK cells were discovered close to fifty years ago, but ILC1s were first described only about fifteen years ago. Within the ILC family, NK and ILC1s share many similarities, as witnessed by their cell surface phenotype which largely overlap. NK cells and ILC1s have been reported to respond to tissue inflammation and intracellular pathogens. Several studies have reported an antitumorigenic role for NK cells in both humans and mice, but data for ILC1s are both scarce and contradictory. In this review, we will first describe the different NK cell and ILC1 subsets, their effector functions and development. We will then discuss their role in cancer and the effects of the tumor microenvironment on their metabolism.


Assuntos
Imunidade Inata , Células Matadoras Naturais , Linfócitos , Neoplasias , Animais , Humanos , Camundongos , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Neoplasias/imunologia , Linfócitos T Auxiliares-Indutores , Microambiente Tumoral
13.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119399, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36402207

RESUMO

Tertiary lymphoid organs (TLOs) are ectopic aggregates of immune cells. As accumulating studies demonstrate TLOs as a predictor of better prognosis in certain cancers, targeting TLO formation, which is tightly regulated by the lymphoid tissue organizer cells (LTOs), has become intriguing in cancer treatment. However, the clinical outcome of these attempts is limited, because the approaches for activating tumor adjacent LTO is lack and little is known about what type of self-cell can be used as LTO to initiate TLO formation. Here we demonstrate that co-stimulation with membrane-bound ligand LTα1ß2 and soluble TNF-α could induced an LTO-like activity in murine neonatal dermal fibroblast, featured by high expression of cell migration-associated chemokines and adhesion molecules that resemble typical LTO gene signature. Furthermore, the LTO-phenotypic dermal fibroblast could enhance the attachment and survival of T and B cell and proliferation of T cell. These findings suggest dermal fibroblast as a promising target for TLO induction to improve cancer immunotherapy.


Assuntos
Tecido Linfoide , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/genética , Tecido Linfoide/metabolismo , Linfócitos/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Fibroblastos/metabolismo
14.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555105

RESUMO

Metabolic syndrome is associated with the development of chronic kidney disease (CKD). We previously demonstrated that aged kidneys are prone to developing tertiary lymphoid tissues (TLTs) and sustain inflammation after injury, leading to CKD progression; however, the relationship between renal TLT and metabolic syndrome is unknown. In this study, we demonstrated that a high-fat diet (HFD) promoted renal TLT formation and inflammation via sterol O-acyltransferase (SOAT) 1-dependent mechanism. Mice fed a HFD prior to ischemic reperfusion injury (IRI) exhibited pronounced renal TLT formation and sustained inflammation compared to the controls. Untargeted lipidomics revealed the increased levels of cholesteryl esters (CEs) in aged kidneys with TLT formation after IRI, and, consistently, the Soat1 gene expression increased. Treatment with avasimibe, a SOAT inhibitor, attenuated TLT maturation and renal inflammation in HFD-fed mice subjected to IRI. Our findings suggest the importance of SOAT1-dependent CE accumulation in the pathophysiology of CKDs associated with TLT.


Assuntos
Doenças Metabólicas , Síndrome Metabólica , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Síndrome Metabólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Rim/metabolismo , Tecido Linfoide/metabolismo , Inflamação/metabolismo , Fibrose , Insuficiência Renal Crônica/metabolismo , Doenças Metabólicas/metabolismo , Traumatismo por Reperfusão/metabolismo , Camundongos Endogâmicos C57BL
15.
Front Immunol ; 13: 847415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439112

RESUMO

B lymphocyte development proceeds through a well-ordered sequence of steps, leading to the formation of a sizeable mature B population recognizing a diversity of antigens. These latter cells are ultimately responsible for the production of antibodies upon immune challenges. The detection of threats to the organism is facilitated by the ability of naïve follicular B cells, the main subset of mature B cells in mice, to circulate between lymphoid tissues in search of their cognate antigens. miRNA-mediated fine-tuning of mRNA stability and translation participates in the optimal expression of genetic programs. This regulatory mechanism has been shown to contribute to B cell biology, although the role of individual miRNAs remains understudied. Here, we selectively inactivated the miR-142 locus in B cells. As a consequence, the mature B compartment was visibly perturbed, in agreement with work in miR-142 knockout mice. However, our strategy allowed us to identify roles for the miR-142 locus in B cell physiology obscured by the complexity of the immune phenotype in the null mutant mice. Thus, these miRNAs are necessary for the proper formation of the pre-B cell compartment during development. More remarkably, naïve follicular B cells demonstrated altered migratory properties upon conditional inactivation of the miR-142 locus. The latter mutant cells expressed reduced levels of the homing molecule CD62L. They also migrated more efficiently towards sphingosine-1-phosphate in vitro and displayed an increased abundance of the sphingosine-1-phosphate receptor 1, compatible with improved lymphocyte egress in vivo. In line with these observations, the ablation of the miR-142 locus in B cells caused a paucity of B cells in the lymph nodes. Mutant B cell accumulation in the latter tissues was also compromised upon transfer into a wild-type environment. These changes coincided with suboptimal levels of FOXO1, a positive regulator of CD62L transcription, in mutant B cells. Overall, our findings indicate contributions for the miR-142 locus in various aspects of the B cell life cycle. Notably, this locus appears to favor the establishment of the migratory behavior required for naïve follicular B cell patrolling activity.


Assuntos
Linfócitos B , MicroRNAs , Camundongos , Animais , Linfócitos B/metabolismo , Linfonodos , Tecido Linfoide/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos/metabolismo , Camundongos Knockout
16.
J Biol Chem ; 298(12): 102694, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375639

RESUMO

Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.


Assuntos
Antígeno B7-H1 , Paxilina , Fator de Necrose Tumoral alfa , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Células Endoteliais , Paxilina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tecido Linfoide/metabolismo , Animais , Camundongos , Mutação
17.
J Exp Med ; 219(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35980385

RESUMO

Stem-like CD8+ T cells sustain the antigen-specific CD8+ T cell response during chronic antigen exposure. However, the signals that control the maintenance and differentiation of these cells are largely unknown. Here, we demonstrated that TGF-ß was essential for the optimal maintenance of these cells and inhibited their differentiation into migratory effectors during chronic viral infection. Mechanistically, stem-like CD8+ T cells carried a unique expression pattern of α4 integrins (i.e., α4ß1hi and α4ß7lo) controlled by TGF-ß. In the absence of TGF-ß signaling, greatly enhanced expression of migration-related markers, including altered expression of α4 integrins, led to enhanced egress of stem-like CD8+ T cells into circulation accompanied by further differentiation into transitional states. Blocking α4 integrin significantly promoted their lymphoid tissue retention and therefore partially rescued the defective maintenance of Tcf-1+ subset in the absence of TGF-ß signaling. Thus, TGF-ß promotes the maintenance and inhibits the further differentiation of stem-like T cells at least partially via enforcing their lymphoid tissue residency.


Assuntos
Linfócitos T CD8-Positivos , Fator de Crescimento Transformador beta , Integrinas/metabolismo , Tecido Linfoide/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 49(13): 4516-4528, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876869

RESUMO

PURPOSE: Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. METHODS: [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. RESULTS: Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues-particularly the spleen-of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. CONCLUSION: [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Infecção por Zika virus/diagnóstico por imagem , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia , Zika virus/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Modelos Animais de Doenças , Biomarcadores/metabolismo , Citocinas
19.
Nat Metab ; 4(7): 867-882, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788761

RESUMO

Anti-programmed death-1 (PD-1) immunotherapy that aims to restore T cell activity in cancer patients frequently leads to immune-related adverse events such as colitis. However, the underlying mechanism is still elusive. Here, we find that Pdcd1-deficient mice exhibit disrupted gut microbiota and aggravated dextran sulfate sodium (DSS)-induced colitis. In addition to T cells, PD-1 is also substantially expressed in colonic lymphoid tissue inducer (LTi) cells. During DSS-induced colitis, LTi cell activation is accompanied by increased PD-1 expression, whereas PD-1 deficiency results in reduced interleukin-22 (IL-22) production by LTi cells and exacerbated inflammation. Mechanistically, activated LTi cells reprogram their metabolism toward carbohydrate metabolism and fatty acid synthesis, while fatty acid oxidation (FAO) is unchanged. However, PD-1 deficiency leads to significantly elevated FAO in LTi cells, which in turn attenuates their activation and IL-22 production. Consistently, FAO suppression efficiently restores IL-22 production in Pdcd1-/- LTi cells. Thus, our study provides unforeseen mechanistic insight into colitis occurrence during anti-PD-1 immunotherapy through LTi cell metabolic reconfiguration.


Assuntos
Colite , Tecido Linfoide , Animais , Colite/induzido quimicamente , Ácidos Graxos , Tecido Linfoide/metabolismo , Camundongos , Linfócitos T Auxiliares-Indutores
20.
Brain ; 145(12): 4287-4307, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35776111

RESUMO

Organized meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the CSF of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin-alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior subclinical immunization with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localized overexpression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin + fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on previous myelin oligodendrocyte glycoprotein immunization, the neuronal loss was present irrespective of immunization. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Ratos , Animais , Linfotoxina-alfa/metabolismo , Glicoproteína Mielina-Oligodendrócito , Inflamação/patologia , Córtex Cerebral/patologia , Meninges , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Fatores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...